The Great Lockdown and the Big Stimulus: Tracing the Pandemic Possibility Frontier for the U.S.

Greg Kaplan Ben Moll Gianluca Violante

Slides at

http://violante.mycpanel.princeton.edu/Slides/PPF_slides.pdf

JHU

What We Do

- Focus: policy response to COVID-19 in the United States
 - 1. Lockdown: business closure and stay-at-home orders
 - 2. Stimulus: CARES Act
- Goal: quantify trade-offs
 - Aggregate: lives versus livelihoods
 - Distributional: who bears the economic costs?
- Approach: distributional Pandemic Possibility Frontier (PPF)
 - Separate economic costs from fatalities
 - Menu of choices, independent of policymakers' preferences
 - Seek policies that shift the frontier inward

- 1. SIR model
 - Two-way behavioral feedback: between virus & economic activity

- 1. SIR model
 - Two-way behavioral feedback: between virus & economic activity
- 2. Heterogeneous Agent model
 - Sectors: regular, social, and home production
 - Types of market-labor: workplace and remote
 - Occupations: flexibility and sectoral intensity

- 1. SIR model
 - Two-way behavioral feedback: between virus & economic activity
- 2. Heterogeneous Agent model
 - Sectors: regular, social, and home production
 - Types of market-labor: workplace and remote
 - Occupations: flexibility and sectoral intensity
 - Economic exposure to pandemic correlated with financial vulnerability

- 1. SIR model
 - Two-way behavioral feedback: between virus & economic activity
- 2. Heterogeneous Agent model
 - Sectors: regular, social, and home production
 - Types of market-labor: workplace and remote
 - Occupations: flexibility and sectoral intensity
 - Economic exposure to pandemic correlated with financial vulnerability
 - Calibrate model to U.S. economy and examine counterfactuals
 - 1. Laissez-faire
 - 2. Lockdown & Lockdown + Fiscal support
 - 3. 'Smarter' policies: Pigouvian taxation with targeted redistribution

- 1. Economic welfare costs of the pandemic are very heterogeneous
 - Regardless of the policy response
 - Laissez-faire vs lockdown: who bears the cost differs
 - Largest welfare costs in the middle of earnings distribution

- 1. Economic welfare costs of the pandemic are very heterogeneous
 - Regardless of the policy response
 - Laissez-faire vs lockdown: who bears the cost differs
 - Largest welfare costs in the middle of earnings distribution
- 2. Slope of PPF varies with length of the lockdown
 - · Reconcile conflicting views on extent of health-wealth trade-off

- 1. Economic welfare costs of the pandemic are very heterogeneous
 - Regardless of the policy response
 - Laissez-faire vs lockdown: who bears the cost differs
 - Largest welfare costs in the middle of earnings distribution
- 2. Slope of PPF varies with length of the lockdown
 - Reconcile conflicting views on extent of health-wealth trade-off
- 3. CARES Act reduced average economic cost by 20%
 - Highly redistributive toward bottom
 - Explains rapid recovery in consumption of poor households

- 1. Economic welfare costs of the pandemic are very heterogeneous
 - Regardless of the policy response
 - Laissez-faire vs lockdown: who bears the cost differs
 - Largest welfare costs in the middle of earnings distribution
- 2. Slope of PPF varies with length of the lockdown
 - Reconcile conflicting views on extent of health-wealth trade-off
- 3. CARES Act reduced average economic cost by 20%
 - Highly redistributive toward bottom
 - Explains rapid recovery in consumption of poor households
- 4. Taxation-based alternatives to lockdown flatten the PPF
 - Mean trade-off improved, but even more dispersion in outcomes

Outline I

- S_t : susceptible
- \mathcal{I}_t : infectious
- \mathcal{R}_t : recovered

- \mathcal{E}_t : exposed = latent virus, not yet infectious
- C_t : critical = in ICU, may ultimately die
- \mathcal{N}_t : population = $\mathcal{S}_t + \mathcal{E}_t + \mathcal{I}_t + \mathcal{C}_t + \mathcal{R}_t$

- S_t : susceptible
- \mathcal{I}_t : infectious
- \mathcal{R}_t : recovered

- \mathcal{E}_t : exposed = latent virus, not yet infectious
- C_t : critical = in ICU, may ultimately die
- \mathcal{N}_t : population = $\mathcal{S}_t + \mathcal{E}_t + \mathcal{I}_t + \mathcal{C}_t + \mathcal{R}_t$
- Death probability of C_t 's depends on $C_t \ge \max$ ICU capacity C_{\max}
- Effective reproduction number: $R_t = \beta_t \frac{1}{\lambda_x} \frac{S_t}{N_t}$
- Feedback from economic activity \rightarrow infections

$$\boldsymbol{\beta}_{t} = \beta_{0} \left(\frac{C_{st}}{\bar{C}_{s}} \right)^{\nu_{\beta}} \left(\frac{L_{wt}}{\bar{L}_{w}} \right)^{\nu_{\beta}}$$

- S_t : susceptible
- \mathcal{I}_t : infectious
- \mathcal{R}_t : recovered

- \mathcal{E}_t : exposed = latent virus, not yet infectious
- C_t : critical = in ICU, may ultimately die
- \mathcal{N}_t : population = $\mathcal{S}_t + \mathcal{E}_t + \mathcal{I}_t + \mathcal{C}_t + \mathcal{R}_t$
- Death probability of C_t 's depends on $C_t \ge \max$ ICU capacity C_{\max}
- Effective reproduction number: $R_t = \beta_t \frac{1}{\lambda_x} \frac{S_t}{N_t}$
- Feedback from economic activity \rightarrow infections

$$\boldsymbol{\beta}_{t} = \boldsymbol{\beta}_{0} \left(\frac{C_{st}}{\bar{C}_{s}} \right)^{\nu_{\beta}} \left(\frac{L_{wt}}{\bar{L}_{w}} \right)^{\nu_{\beta}}$$

- Parameterization: $\nu_{\beta} = 0.8$
 - R_t drops from 2.5 to 0.8 after the lockdown
 - Google Community Indexes of Workplace and Retail drop 50%

- S_t : susceptible
- \mathcal{I}_t : infectious
- \mathcal{R}_t : recovered

- \mathcal{E}_t : exposed = latent virus, not yet infectious
- C_t : critical = in ICU, may ultimately die
- \mathcal{N}_t : population = $\mathcal{S}_t + \mathcal{E}_t + \mathcal{I}_t + \mathcal{C}_t + \mathcal{R}_t$
- Death probability of C_t 's depends on $C_t \ge \max \text{ICU}$ capacity C_{\max}
- Effective reproduction number: $R_t = \beta_t \frac{1}{\lambda_{\tau}} \frac{S_t}{M_{\tau}}$
- Feedback from economic activity → infections

$$\boldsymbol{\beta}_{t} = \boldsymbol{\beta}_{0} \left(\frac{C_{st}}{\bar{C}_{s}} \right)^{\nu_{\beta}} \left(\frac{L_{wt}}{\bar{L}_{w}} \right)^{\nu_{\beta}}$$

- Parameterization: $\nu_{\beta} = 0.8$
 - R_t drops from 2.5 to 0.8 after the lockdown
 - Google Community Indexes of Workplace and Retail drop 50%
- Assumption: vaccine arrives after 24 months

Occupations and Sectors

	Flexible	Rigid
C-intensive	Software engineer, architect	Car mechanic, miner
S-intensive	Event planner, social scientist	Waiter, shop assistant

Occupations and Sectors

-	Flexible	Rigid
C-intensive	Software engineer, architect	Car mechanic, miner
S-intensive	Event planner, social scientist	Waiter, shop assistant

- 1. Flexibility: substitutability between remote and workplace hours
 - Total labor supply = $L_w^j + \phi^j L_r^j$
- 2. Sectoral intensity: share of employment in social vc regular sector, (ξ_s^i, ξ_c^j)

$$Y_{i} = Z_{i} N_{i}^{\alpha_{i}} K_{i}^{1-\alpha_{i}}, \quad N_{i} = \left[\sum_{j=1}^{J} \left(\xi_{i}^{j}\right)^{\frac{1}{\sigma}} \left(N_{i}^{j}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}, \quad i \in \{s, c\}$$

Occupations and Sectors

	Flexible	Rigid
C-intensive	Software engineer, architect	Car mechanic, miner
		Supermarket clerk
S-intensive	Event planner, social scientist	Waiter, shop assistant
		Nurse

1. Flexibility: substitutability between remote and workplace hours

• Total labor supply = $L_w^j + \phi^j L_r^j$

2. Sectoral intensity: share of employment in social vc regular sector, (ξ_s^j, ξ_c^j)

$$Y_{i} = Z_{i} N_{i}^{\alpha_{i}} \mathcal{K}_{i}^{1-\alpha_{i}}, \quad N_{i} = \left[\sum_{j=1}^{J} \left(\xi_{i}^{j}\right)^{\frac{1}{\sigma}} \left(N_{i}^{j}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}, \quad i \in \{s, c\}$$

3. Essential occupations: exempt from lockdown

Households

- Forward looking and discount at time preference rate (ρ) + death rate
- Period utility: $U[c, s, h] V[\ell_w, \ell_r, h]$
 - c: regular consumption s: social consumption
 - h: home production
 - ℓ_r : remote hours

- *l*_w: workplace hours

Households

- Forward looking and discount at time preference rate (ρ) + death rate
- Period utility: $U[c, s, h] V[\ell_w, \ell_r, h]$
 - c: regular consumption s: social consumption
 - h: home production
 - ℓ_r : remote hours

- ℓ_w : workplace hours

Budget constraint of healthy household working in occupation j

$$\dot{b} = (1 - \tau)w^{j}z \left(\ell_{w} + \phi^{j}\ell_{r}\right) + r^{b}b + T - c - p_{s}s - d - \chi(d, a)$$

$$\dot{a} = r^{a}a + d$$

- b: liquid assets
- $\phi^{j} \in [0, 1]$: flexibility of occupation j
- a: illiquid assets
 - χ : transaction cost
- Sick households (= C, in ICU): cannot produce, gov't feeds them

Feedback from Virus \rightarrow Economic Activity

• Period utility: $U[c, v_s(\mathcal{I})s, h] - V[v_\ell(\mathcal{I})\ell_w, \ell_r, h]$

Feedback from Virus \rightarrow Economic Activity

- Period utility: $U[c, v_s(\mathcal{I})s, h] V[v_\ell(\mathcal{I})\ell_w, \ell_r, h]$
- Circulation of virus affects (dis)utility from working and consuming s
- Not connected to 'value of life'/fear of death, but to inability to lead a normal life
- Calibration: match drop in activity before executive orders (Google Index)
- Probably a lower bound for behavioral response at the moment

1. Workplace lockdown: Mandated maximum individual workplace hours

 $\boldsymbol{\ell}_{w} \leq \boldsymbol{\kappa}_{\boldsymbol{\ell}}(\boldsymbol{\ell}_{w} + \boldsymbol{\ell}_{r}), \qquad \boldsymbol{\kappa}_{\boldsymbol{\ell}} \in [0, 1]$

1. Workplace lockdown: Mandated maximum individual workplace hours

 $\boldsymbol{\ell}_{w} \leq \boldsymbol{\kappa}_{\boldsymbol{\ell}}(\boldsymbol{\ell}_{w} + \boldsymbol{\ell}_{r}), \qquad \boldsymbol{\kappa}_{\boldsymbol{\ell}} \in [0, 1]$

2. Social sector lockdown: Mandated decrease in K utilization in s sector

$$C_s = Z_s(\kappa_s K_s)^{\alpha_s} N_s^{1-\alpha_s}, \qquad \kappa_s \in [0, 1]$$

1. Workplace lockdown: Mandated maximum individual workplace hours

$$\boldsymbol{\ell}_{w} \leq \boldsymbol{\kappa}_{\boldsymbol{\ell}}(\boldsymbol{\ell}_{w} + \boldsymbol{\ell}_{r}), \qquad \boldsymbol{\kappa}_{\boldsymbol{\ell}} \in [0, 1]$$

2. Social sector lockdown: Mandated decrease in K utilization in s sector

$$C_s = Z_s(\kappa_s K_s)^{\alpha_s} N_s^{1-\alpha_s}, \qquad \kappa_s \in [0, 1]$$

• 1. 'stay-at-home orders' and 2. 'non-essential business closures'

1. Workplace lockdown: Mandated maximum individual workplace hours

$$\boldsymbol{\ell}_{w} \leq \boldsymbol{\kappa}_{\boldsymbol{\ell}}(\boldsymbol{\ell}_{w} + \boldsymbol{\ell}_{r}), \qquad \boldsymbol{\kappa}_{\boldsymbol{\ell}} \in [0, 1]$$

2. Social sector lockdown: Mandated decrease in K utilization in s sector

$$C_s = Z_s(\kappa_s K_s)^{\alpha_s} N_s^{1-\alpha_s}, \qquad \kappa_s \in [0, 1]$$

- 1. 'stay-at-home orders' and 2. 'non-essential business closures'
- Lockdowns reduce infections because reduce $\beta_t = \beta(C_{st}, L_{wt})$
- Lockdowns affect same behavioral margins as the pandemic

1. Workplace lockdown: Mandated maximum individual workplace hours

$$\boldsymbol{\ell}_{w} \leq \boldsymbol{\kappa}_{\boldsymbol{\ell}}(\boldsymbol{\ell}_{w} + \boldsymbol{\ell}_{r}), \qquad \boldsymbol{\kappa}_{\boldsymbol{\ell}} \in [0, 1]$$

2. Social sector lockdown: Mandated decrease in K utilization in s sector

$$C_s = Z_s(\kappa_s K_s)^{\alpha_s} N_s^{1-\alpha_s}, \qquad \kappa_s \in [0, 1]$$

- 1. 'stay-at-home orders' and 2. 'non-essential business closures'
- Lockdowns reduce infections because reduce $\beta_t = \beta(C_{st}, L_{wt})$
- Lockdowns affect same behavioral margins as the pandemic
- Calibration: (i) 2 months, (ii) match decline in activity (Google Index)
- Assumption: no future lockdown in case of 2nd wave

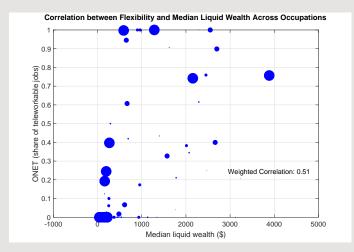
Remaining Model Ingredients

Investment Fund

- Illiquid asset = shares of a risk-neutral investment fund
- The fund owns *K* and makes investment decisions

Fiscal Authority

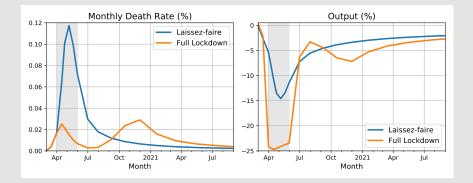
• Issues liquid debt (B^g) , spends (G), taxes and transfers (T)


Monetary Authority

• Central bank absorbs the additional debt needed to finance CARES Act

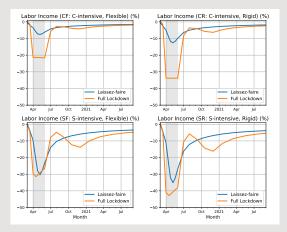
 \rightarrow market clearing conditions

Economic Exposure and Financial Vulnerability


• Model reproduces median liquid wealth holdings by occupation

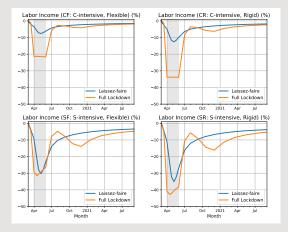
Outline I

Laissez-faire vs Lockdown: Aggregates

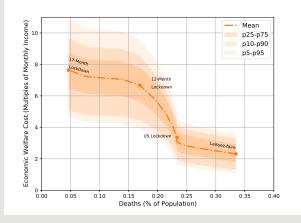

- Lockdown → second wave, but fewer cumulative deaths
- Lockdown \rightarrow longer, deeper contraction and *W*-shaped recovery

ssez-faire dynamics 📕 → lockdown

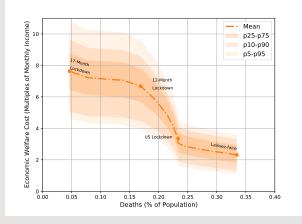
KMV - Great Lockdown


Laissez-faire vs Lockdown: Occupations

- Laissez-faire: large drop in income mainly for S-intensive occupations
- Lockdown: severe drop in income also for C-intensive occupations


Laissez-faire vs Lockdown: Occupations

- Laissez-faire: large drop in income mainly for S-intensive occupations
- Lockdown: severe drop in income also for C-intensive occupations
- Second wave looks like a laissez-faire recession

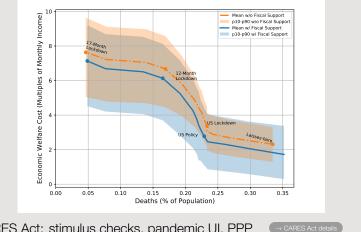

Pandemic Possibility Frontier (PPF)

- Large average economic costs and big dispersion
- Heterogeneity in economic costs exacerbated with longer lockdowns

Pandemic Possibility Frontier (PPF)

- Large average economic costs and big dispersion
- Heterogeneity in economic costs exacerbated with longer lockdowns
- Very non-linear trade-off: role of ICU constraint and vaccine

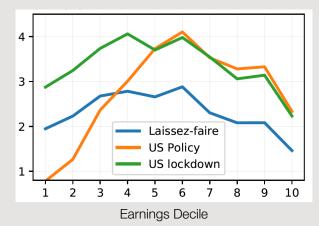
Distribution of Economic Welfare Costs



- Largest economic costs in middle of distribution
- Transfers (bottom) vs Rigid labor (middle) vs Flexible labor (top)

 \rightarrow welfare cost distribution

CARES Act Shifts Down the PPF



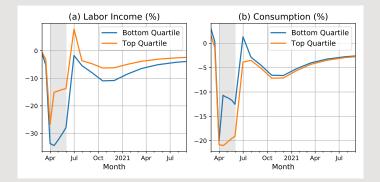
CARES Act: stimulus checks, pandemic UI, PPP

Distribution of Economic Welfare Costs

• Big impact of CARES Act on households below the median

• On economic grounds, bottom 1/3 prefers US policy to laissez-faire

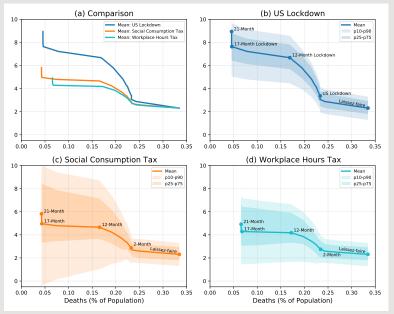
 \rightarrow welfare cost distribution


Consumption Dynamics

• US Data: biggest y drops, but fastest c recovery at the bottom of the income distribution \rightarrow US data

Consumption Dynamics

• US Data: biggest y drops, but fastest c recovery at the bottom of the income distribution \rightarrow US data



CARES Act redistributed heavily toward low-income hh with high MPC

→ components of CARES Act by income quartile

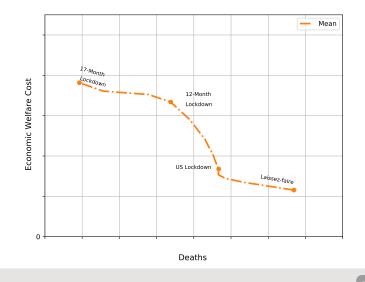
Alternative Smarter Polices

Outline I

Messages

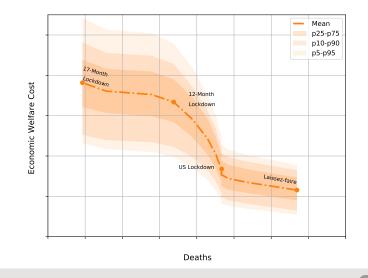
- 1. Economic cost of pandemic: large & diverse, regardless of lockdown
- 2. Distributional PPF as a tool for quantifying trade-offs:
 - Aggregate: between lives vs livelihoods
 - Distributional: over who bears economic burden
- 3. Non-linear PPF: reconciles conflicting views on aggregate tradeoff
- 4. Exposure correlated with vulnerability \Rightarrow scope for fiscal policy
- 5. US CARES Act:
 - Shifts PPF inward: reduces economic costs w/o increasing deaths
 - Faster recovery of spending for low income households

6. Pigouvian schemes alternative to lockdowns improve aggregate trade-off


Thanks and Stay Safe!

Outline I

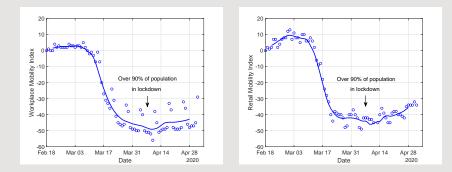
Pandemic Possibility Frontier



 \rightarrow back to intro

Pandemic Possibility Frontier

Some Dimensions we Abstract From


- 1. Differential impact of the epidemic across age groups (Glover-Heathcote-Krueger-RiosRull, Bairoliya-Imrohoroglu, Acemoglu et al., Brotherhood-Kircher-Santos-Tertilt, ...)
- 2. Differential impacts of the epidemic across gender (Alon-Doepke-Olmstead Rumsey-Tertilt, ...)
- 3. Impact of the epidemic on deaths from other causes
- 4. Input-output linkages in production (Baqaee-Farhi, ...)
- 5. Firm balance sheets, liquidity provision to firms (Buera-Fattal Jaef-Neumeyer-Shin, Elenev-Landvoigt-VanNieuwerburgh, ...)
- 6. Costly destruction of viable employment relationships

7. ...

 \rightarrow model ingredients

Google COVID-19 Community Mobility Data

 \rightarrow back to Epi model

Background on Lockdowns in SIR Models

- Some vocabulary:
 - 1. Basic reproduction number: $R_0 := \beta_0 / \lambda_I$
 - 2. Effective reproduction number: $R_t^e := R_0 \times S_t / N_t$
 - 3. Herd immunity threshold: $S^*/N := 1/R_0$ or $\mathcal{R}^*/N = 1 S^*/N = 1 1/R_0$
 - 4. Final size of disease:

$$\mathcal{S}_{\infty} = e^{-R_0(1-\mathcal{S}_{\infty})}$$

Background on Lockdowns in SIR Models

- Some vocabulary:
 - 1. Basic reproduction number: $R_0 := \beta_0 / \lambda_1$
 - 2. Effective reproduction number: $R_t^e := R_0 \times S_t / N_t$
 - 3. Herd immunity threshold: $S^*/N := 1/R_0$ or $\mathcal{R}^*/\mathcal{N} = 1 - \mathcal{S}^*/\mathcal{N} = 1 - 1/R_0$
 - 4. Final size of disease:
- Two key features of SIR models:
 - 1. Infections \uparrow if $R_t^e > 1$ or $S > S^*$ and \downarrow otherwise
 - 2. Epidemic "overshoot": total infections > herd immunity, $S_{\infty} > S^*$

 $\mathcal{S}_{\infty} = e^{-R_0(1-\mathcal{S}_{\infty})}$

Background on Lockdowns in SIR Models

- Some vocabulary:
 - 1. Basic reproduction number: $R_0 := \beta_0 / \lambda_I$
 - 2. Effective reproduction number: $R_t^e := R_0 \times S_t / N_t$
 - 3. Herd immunity threshold: $S^*/N := 1/R_0$ or $\mathcal{R}^*/N = 1 S^*/N = 1 1/R_0$
 - 4. Final size of disease: $S_{\infty} = e^{-R_0(1-S_{\infty})}$
- Two key features of SIR models:
 - 1. Infections \uparrow if $R_t^e > 1$ or $S > S^*$ and \downarrow otherwise
 - 2. Epidemic "overshoot": total infections > herd immunity, $\mathcal{S}_{\infty} > \mathcal{S}^*$
- Results on lockdowns := $R_0 \downarrow$
 - Even temporary lockdowns reduce total number of infections
 - But total number of infections \geq herd immunity threshold
 - Best lockdowns-only can do is eliminate epidemic "overshoot"
 - If lockdown too short or too tight, get 2nd wave

Market Clearing Conditions

Regular goods market

$$Y_c = C_c + I + G + \chi$$

Social goods market

$$Y_s = C_s$$

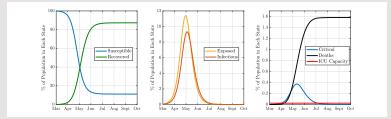
• Labor market for each occupation

$$N_{c}^{j} + N_{s}^{j} = \int z(\ell_{w}^{j}(\mathfrak{h}, a, b, z) + \phi^{j}\ell_{r}^{j}(\mathfrak{h}, a, b, z))d\mu, \quad j = 1, ..., 5$$

Liquid asset market

$$B^h = B^g$$

• Illiquid asset market

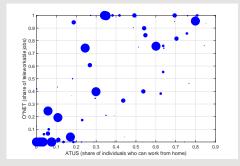

$$A = V_{\text{fund}}(K, \Theta_c, \Theta_s), \quad K = K_c + K_s$$

 \rightarrow model ingredients

Epidemiological Parameters

Description	Parameter	Value
Initial basic reproduction number	$R_0^{\text{init}} = \beta_0^{\text{init}} / \lambda_1$	2.5
Final basic reproduction number	$R_0^{\text{end}} = \beta_0^{\text{end}} / \lambda_1$	2
Avg. duration of \mathcal{I} nfectious	$T_I \Rightarrow \lambda_I = 1/T_I$	4.3 days
Avg. duration of \mathcal{E} xposure (latency)	$T_E \Rightarrow \lambda_E = 1/T_E$	5.0 days
Infection fatality rate	$IFR = \chi \delta_C$	$0.02 \times 0.33 = 0.066$

- Time trend in transmissions (masks,...): $\tilde{R}_t = (1 \omega_t)R_0 + \omega_t \bar{R}$, $\bar{R} = 1.5$, $\omega_t = \text{logistic}$
- Herd immunity threshold: $1-1/R_0^{\text{init}}=60\% \Rightarrow 1-1/R_0^{\text{end}}=50\%$
- Vaccine arrival after 18 months



Occupations: Flexibility

- O*NET: Share of tasks that can be performed at home (Dingel-Neiman)
- ATUS Q: As part of your (main) job, can you work at home?
- Systematic variation across 3-digit SOC occupations

• Two flexibility levels: high flexibility occupation if O*NET share > 0.5.

 \rightarrow back to model

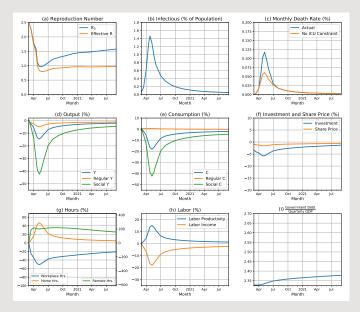
Occupations: Social vs Regular Intensity

NAICS code	Sector C (value added share: 0.74)	NAICS code	Sector S (value added share: 0.26)
11	Agriculture, forestry, fishing, and hunting	44-45	Retail trade
21	Mining	481-482-483	Air, rail, and water transportation
22	Utilities	485-487-488	Transit and scenic transportation
23	Construction	61	Educational services
31-32-33	Manufacturing	62	Health care and social assistance services
42	Wholesale trade	531-532-533	Real estate, rental and leasing services
484-486	Truck and pipeline transportation	71	Arts, entertainment, and recreation services
491-492	Postal transportation	72	Accommodation and food services
493	Warehousing and storage	81	Other services (excluding P.A.)
51	Information		
52	Finance and insurance		
_	Housing services		
54-55	Professional, technical, and scientific services		
56	Management and administrative services		

→ back to model

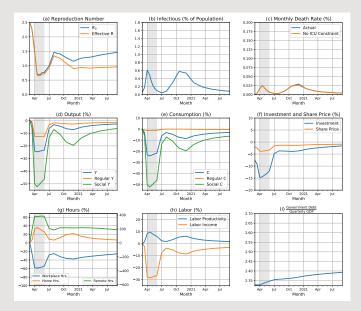
Occupations: Exposure vs Vulnerability

Occupation	ϕ^{j}	ξic	ξ ^j s	Empl Share	Earnings	Liq Wealth
Essential	0.1	0.19	0.35	0.31	\$45 <i>K</i>	\$1,300
CF: C-intensive, Flexible	1	0.57	0.12	0.21	\$79 <i>K</i>	\$18,400
SF: S-intensive, Flexible	1	0.03	0.19	0.10	\$51 <i>K</i>	\$8,900
CR: C-intensive, Rigid	0.1	0.19	0.04	0.13	\$45 <i>K</i>	\$1,000
SR: S-intensive, Rigid	0.1	0.04	0.29	0.24	\$32 <i>K</i>	\$900
Source: O*NET, OES, SIPP						

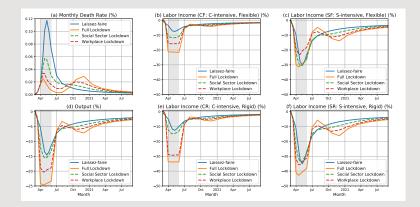

- Estimate stochastic processes for household wage dynamics by occupation from PSID
- To match liquid wealth we add occupational-specific wedge on liquid rate

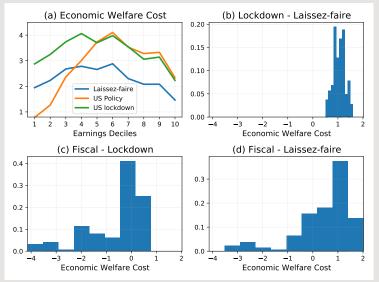
→ back to model

Aggregates Dynamics: Laissez-Faire

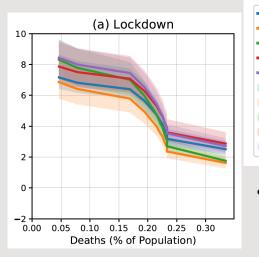


KMV - Great Lockdown


Aggregates Dynamics: Lockdown

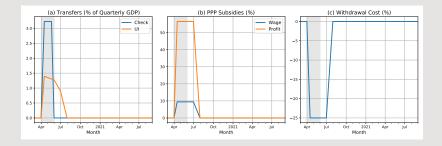


Lockdown Decomposition



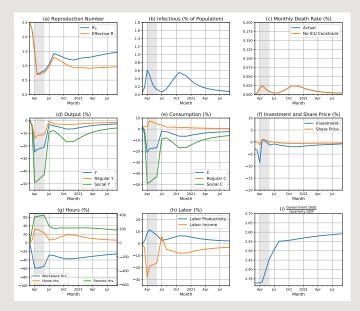
Economic Welfare Cost Distribution

Production Possibility Frontier by Occupation

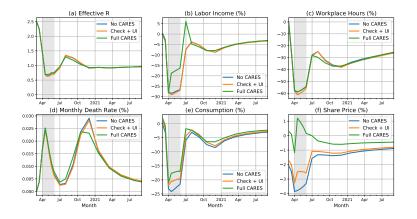


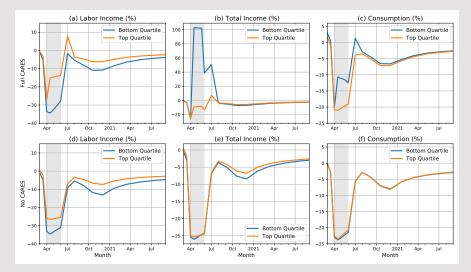
Mean E: Essential
Mean CF: C-intensive, Flexible
Mean CR: C-intensive, Rigid
Mean SF: S-intensive, Flexible
Mean SR: S-intensive, Rigid
p25-p75 E: Essential
p25-p75 CF: C-intensive, Flexible
p25-p75 CR: C-intensive, Rigid
p25-p75 SF: S-intensive, Flexible
p25-p75 SR: S-intensive, Rigid
p25-p75 SK: 5-Intensive, Rigid

• *C*-intensive, rigid occupations (green line) hurt most by longer lockdowns

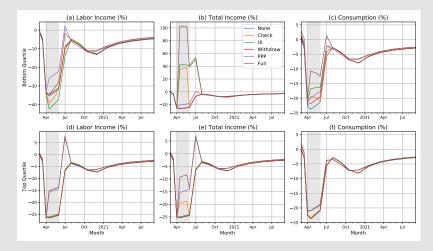

Modeling CARES Act

- Stimulus checks: unconditional transfer of \$1,900 to everyone
- Pandemic UI: replacement earnings loss by decile (Ganong-Vavra)
- Paycheck Protection Program: part wage & profit subsidies (half each)
- 401(k) withdrawals up to \$100,000: reduction in withdrawal cost

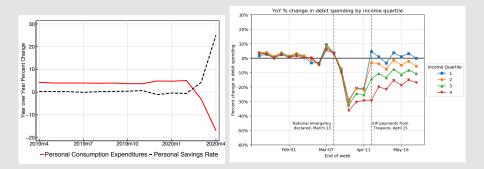

Aggregates Dynamics: Lockdown + CARES Act



Decomposition of CARES Act Elements



CARES Act by Income Quartile



CARES Act Components by Income Quartile

Consumption Dynamics by Income Quartile: US Data

- Source: Cox-Ganong-Noel-Vavra-Wong-Farrell-Greig
- Consumption of poor recovers faster than consumption of rich

