Capital-Skill Complementarity and Inequality

Gianluca Violante

Princeton University

Nobel Symposium on Inequality - Stockholm - August 27, 2022

Capital-Skill Complementarity

- Griliches (REStat 1969)
- Valuable insight to interpret inequality dynamics in the US and globally
- Macroeconomic perspective: aggregate production function
- Outline
 - 1. The hypothesis: theory and data
 - 2. Relationship with SBTC
 - 3. KSC in use or in adoption of new capital?
 - 4. Quasi-experimental micro evidence
 - 5. Skills vs tasks
 - 6. Global inequality trends

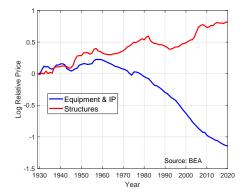
A Two-Sector Model of the Macroeconomy

• Greenwood, Hercowitz and Krusell (AER 1998)

$$c_t = A_{ct}F(k_{ct}, \mathbf{I}_{ct})$$

$$i_t = A_{it}F(k_{it}, \mathbf{I}_{it})$$

- Key: $A_{ct} \neq A_{it}$, i.e., sector-specific technical change
- Assume F is CRS, factors are fully mobile, and markets are competitive
- Can represent this economy through an aggregate production function:


$$c_t + i_t q_t = A_{ct} F(k_t, \mathbf{I}_t)$$
, where $q_t = \frac{A_{ct}}{A_{it}}$

- 1. q_t^{-1} is the rate of investment-specific technical change
- 2. q_t is also the price of investment relative to consumption

Relative Price of Capital

• Important: distinguish between structures and equipment & IP

- Fact: *q_t* started declining around 1960, accelerated since 1980, and slowed down since 2010
- Key observation to interpret dynamics of income inequality in the US

Capital-Skill Complementarity Hypothesis

- Three steps:
 - 1. Rapid decline in the relative price of equipment increased the relative demand for capital
 - 2. Skilled labor is a complement of capital equipment in production, whereas unksilled labor is a substitute
 - 3. Due to these patterns of substitutability, this technological force pushed up the skill premium
- Implementation: must take a stand on functional form specification for F
- Key: distinguish (1) between capital equipment and structures, (2) and between skilled and unskilled labor (education),

Aggregate Production Function

• Krusell, Ohanian, Rios-Rull and Violante (ECA 2000)

$$Y_t = A_t F(K_{st}, K_{et}, S_t, U_t)$$

= $A_t K_{st}^{\alpha} \left[\mu U_t^{\sigma} + (1-\mu) \underbrace{[\lambda K_{et}^{\rho} + (1-\lambda) S_t^{\rho}]}_{X_t} \right]^{\frac{1-\alpha}{\sigma}}$

- Elasticity of substitution between (K_e, S) is $\frac{1}{1-\rho}$
- Elasticity of substitution between (X, U) is $\frac{1}{1-\sigma}$

Aggregate Production Function

• Krusell, Ohanian, Rios-Rull and Violante (ECA 2000)

$$Y_t = A_t F(K_{st}, K_{et}, S_t, U_t)$$

= $A_t K_{st}^{\alpha} \left[\mu U_t^{\sigma} + (1-\mu) \underbrace{[\lambda K_{et}^{\rho} + (1-\lambda) S_t^{\rho}]}_{X_t} \right]^{\frac{1-\alpha}{\sigma}}$

- Elasticity of substitution between (K_e, S) is $\frac{1}{1-\rho}$
- Elasticity of substitution between (X, U) is $\frac{1}{1-\sigma}$
- How should we formally define 'capital-skill complementarity'?
 - Fallon and Layard (JPE 1985)
 - Two definitions, both implying $\sigma > \rho$

Two Formal Definitions of K-S Complementarity

- 1. A rise in K_e increases the marginal product (wage) of S more than the marginal product (wage) of U
 - S is a stronger (Hicks) q-complement than U with K_e

Two Formal Definitions of K-S Complementarity

- 1. A rise in K_e increases the marginal product (wage) of S more than the marginal product (wage) of U
 - S is a stronger (Hicks) q-complement than U with K_e

2. A fall in q increases the demand for S more than the demand for U

• S is a stronger (Allen) p-complement than U with K_e

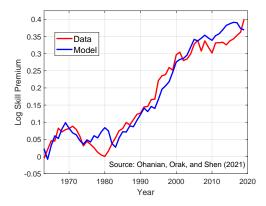
Both definitions are true when $\sigma > \rho$

Implications for Wage Inequality

• Skill premium implied by the model:

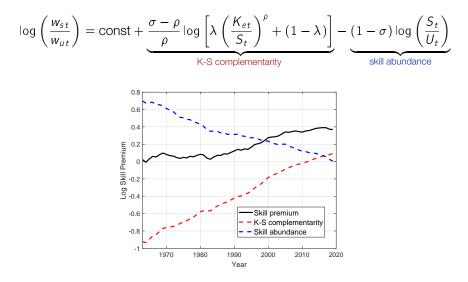
$$\log\left(\frac{w_{st}}{w_{ut}}\right) = \text{const} + \underbrace{\frac{\sigma - \rho}{\rho} \log\left[\lambda \left(\frac{K_{et}}{S_t}\right)^{\rho} + (1 - \lambda)\right]}_{\text{K-S complementarity}} - \underbrace{(1 - \sigma) \log\left(\frac{S_t}{U_t}\right)}_{\text{skill abundance}}$$

• In the data:


1. $K_{et}/S_t \uparrow \Rightarrow$ when $\sigma > \rho$, KSC term raises skill premium

2. $S_t/U_t \uparrow \Rightarrow$ skill abundance always lowers skill premium

Estimation on Aggregate Data (1963-2019)


Model parameters are estimated based on several moment conditions

• $\hat{\sigma} = 0.55 (0.05)$ and $\hat{\rho} = -.45 (0.06) \Rightarrow$ K-S complementarity

Decomposition of the Skill Premium

• K-S complementarity acts as a skill-biased demand shifter

K-S complementarity vs SBTC

• Skill premium under SBTC

$$\log\left(\frac{w_{st}}{w_{ut}}\right) = \underbrace{\sigma \gamma \cdot t}_{\text{SBTC}} - (1 - \sigma) \log\left(\frac{S_t}{U_t}\right)$$

• Skill premium under K-S complementarity (log-appx.)

$$\log\left(\frac{w_{st}}{w_{ut}}\right) \simeq \lambda \frac{\sigma - \rho}{\rho} \left(\frac{K_{et}}{S_t}\right)^{\rho} - (1 - \sigma) \log\left(\frac{S_t}{U_t}\right)$$

- K-S complementarity offers a microfoundation to SBTC
 - 1. It replaces an unobservable trend with observables
 - 2. It gives economic content to SBTC

K-S Complementarity vs SBTC

• Models are nested: can be easily tested against each other

$$\log\left(\frac{w_{st}}{w_{ut}}\right) \simeq \lambda \frac{\sigma - \rho}{\rho} \left(\frac{K_{et}}{S_t}\right)^{\rho} + \sigma \gamma \cdot t - (1 - \sigma) \log\left(\frac{S_t}{U_t}\right)$$

σ	ρ	Ŷ
0.434**	-0.522**	0.020
(0.173)	(0.181)	(0.036)

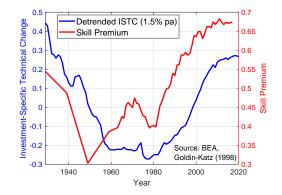
K-S Complementarity vs SBTC

• Models are nested: can be easily tested against each other

$$\log\left(\frac{w_{st}}{w_{ut}}\right) \simeq \lambda \frac{\sigma - \rho}{\rho} \left(\frac{K_{et}}{S_t}\right)^{\rho} + \sigma \gamma \cdot t - (1 - \sigma) \log\left(\frac{S_t}{U_t}\right)$$

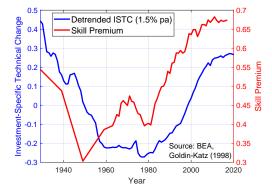
σ	ô	Ŷ
0.434**	-0.522**	0.020
(0.173)	(0.181)	(0.036)

• Acemoglu's (JEL 2002) critique: in this regression


$$\log\left(\frac{w_{st}}{w_{ut}}\right) = \boldsymbol{\beta} \cdot \boldsymbol{q}_t + \sigma \boldsymbol{\gamma} \cdot \boldsymbol{t} - (1 - \sigma) \log\left(\frac{S_t}{U_t}\right)$$

the time trend makes the relative price of capital q_t not significant

- But this regression is not the one implied by the KSC model
- In fact, q_t insignificant even when true DGP is the KSC model!



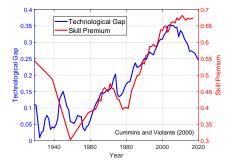
A Longer-Run Perspective on the KSC Hypothesis

A Longer-Run Perspective on the KSC Hypothesis

- What are the origins of KSC? (Goldin-Katz, QJE 1998; Mitchell, IER 2005)
- 19th century: no trace, rather, K-S substitution in manufacturing
- 1920s-30s: emergence of K-S complementarity
 - shift from assembly line toward continuous and batch processes

Alternative Formulation: Complementarity in Adoption

- Nelson-Phelps (AER 1966), Caselli (AER 1997), Greenwood-Yorukoglu (1997), Galor and Moav (QJE 2000), Aghion-Howitt-Violante (JEG 2002)
- Skills allow workers to adapt to a new technological environment
- *K* and *S* are complementary only in adoption phase of new technology
- Effect on the skill premium is transitory
- Are K and S complementary in adoption or in use?
 - Chun (RESTat 2005) exploits US cross-industry variation in age and quantity of IT capital, and concludes use is more important than adoption in driving dynamics of the skill premium


Technological Gap and Skill Premium

- Hulten's (AER 1992) notion of technological gap
- Gap between productivity of new investment and that of existing capital

Technological Gap =
$$\frac{\phi_t - \Phi_t}{\Phi_t}$$

• $\phi_t = q_t^{-1}$: rate of investment-specific technical change

• $\Phi_t = \frac{\sum_{j=0}^t (1-\delta)^j \phi_{t-ji_{t-j}}}{\sum_{j=0}^t (1-\delta)^{j_{t-j}}}$: technology embodied in existing K stock

'Causal' Micro Evidence on K-S Complementarity

- Akerman, Gaarder, and Mogstad (QJE 2015). The skill complementarity of broadband internet √
 - Staggered adoption of broadband internet across regions
- Acemoglu and Finkelstein (JPE 2008). Input and Technology Choices in Regulated Industries: Evidence from the Health Care Sector ✓
 - Policy-induced decline in the relative price of capital
- Lewis (QJE 2011). Immigrations, Skill Mix and Capital-Skill Complementarity ✓
 - Local variation in migration flows of unskilled labor
- Curtis, Garrett, Ohrn, Roberts, and Suarez Serrato (WP 2022). Capital Investment and Labor Demand ×
 - Variation in depreciation bonus across manufacturing plants
 - Contrarian result: K_e and production workers are p-complement

KSC in the Micro and in the Macro

- Can we reconcile the fact that (apparently) some sectors of the economy do not display KSC, while aggregate data do?
- Yes, through equilibrium aggregation, especially if the sector w/o KSC is small and shrinking like manufacturing
- Example: 2 goods, 2 inputs with same cost share, CRS production and free mobility of factors

$$y_1 = f(k_1, l_1) \quad [\text{share}_1 \text{ small } \& \quad \varepsilon_{k_1, l_1} > 0]$$

$$y_2 = g(k_2, l_2) \quad [\text{share}_2 \text{ large } \& \quad \varepsilon_{k_2, l_2} < 0]$$

$$y = h(y_1, y_2)$$

$$\Rightarrow \varepsilon_{k, l} = \text{share}_1 \cdot \varepsilon_{k_1, l_1} + \text{share}_2 \cdot \varepsilon_{k_2, l_2} < 0$$

• Berlingieri-Boeri-Lashkari-Vogel (WP, 2022): reallocation of output toward firms with stronger KSC is quantitatively important

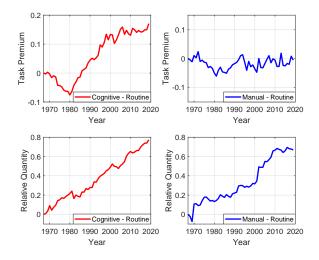
A Challenge for the KSC Hypothesis?

KSC struggles to explain why real unskilled wages stagnated

- It predicts growing real unskilled wage
 - Why? In the specification for F, K_e is q-complement with U

Three Possible Solutions

- 1. Stagnant TFP in the C sector
 - Still consistent with aggregate growth because of ISTC
- 2. Different nesting, e.g. a case where $\frac{\partial \log F_U}{\partial \log K_e} < 0$ is: $Y_t = A_t K_{st}^{\alpha} S_t^{\mu} \left[\lambda K_{et} + (1 - \lambda) U_t \right]^{1 - \alpha - \mu}$
- 3. Role of labor market institutions (e.g., Lee QJE 1999)

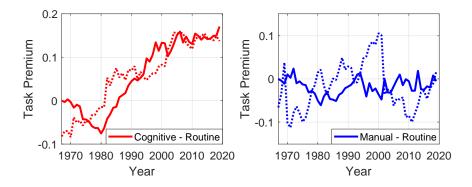


From Skills to Tasks

- Alternative version of the model where labor is classified based on task
 - Autor-Levy-Murnane (QJE 2003), Acemoglu-Autor (HLE 2011)
- Three groups of tasks:
 - 1. Cognitive (non-routine): e.g., manager, engineer
 - 2. Routine: e.g., machine operator, bank teller
 - 3. Manual: e.g., janitor, gardener
- Fact: different employment and wage dynamics across groups

Relative Wages and Employment by Task

- Sharp rise in the task premium of C labor
- Polarization in employment: *C* and *M* labor ↑ relative to *R*


Capital-Task Complementarity (Orak, 2020)

$$Y_{t} = A_{t} K_{t}^{\alpha} \left[\mu R_{t}^{\sigma} + (1-\mu) \left[\left(\lambda K_{et}^{\rho} + (1-\lambda) C_{t}^{\rho} \right)^{\frac{\theta}{\rho}} M_{t}^{1-\theta} \right]^{\sigma} \right]^{\frac{1-\alpha}{\sigma}}$$

Capital-Task Complementarity (Orak, 2020)

$$Y_{t} = A_{t} \mathcal{K}_{t}^{\alpha} \left[\mu \mathcal{R}_{t}^{\sigma} + (1-\mu) \left[\left(\lambda \mathcal{K}_{et}^{\rho} + (1-\lambda) \mathcal{C}_{t}^{\rho} \right)^{\frac{\theta}{\rho}} \mathcal{M}_{t}^{1-\theta} \right]^{\sigma} \right]^{\frac{1-\alpha}{\sigma}}$$

• Estimates: $\hat{\sigma} = 0.45$ $\hat{\rho} = -0.22 \Rightarrow$ K-C complementarity

Global Inequality Trends and K-S Complementarity

- Hecksher-Olin: as countries open to trade
 - 1. Skill premium rises in skill-abundant countries and falls in others
 - 2. Price of skill-intensive goods (e.g., capital equipment) rises
- Data
 - 1. Skill premium has increased in many poor countries
 - 2. Relative price of capital has fallen precipitously

Global Inequality Trends and K-S Complementarity

- Parro (AEJ: Macro 2019)
- Embeds capital-skill complementarity in a quantitative model of trade
- Key fact: developing countries import much of their capital equipment
- In poor countries, a reduction in trade costs:
 - 1. Decreases the price of capital goods imported from the 'North'
 - 2. Fosters imports of capital goods
 - 3. Increases the skill premium through capital-skill complementarity

Taking Stock

- KSC is a central insight to interpret inequality dynamics
- Key feature of aggregate production relations with multiple (L, K) inputs
- Also valuable to other areas of macroeconomics, such as
 - Business cycle (Lindquist, RED 2004)
 - Taxation (Brinca, Duarte, Holter, Oliveira, WP 2022)
 - Monetary policy (Dolado, Motiovszki, Pappa AEJ: Macro 2022)

Taking Stock

- KSC is a central insight to interpret inequality dynamics
- Key feature of aggregate production relations with multiple (L, K) inputs
- Also valuable to other areas of macroeconomics, such as
 - Business cycle (Lindquist, RED 2004)
 - Taxation (Brinca, Duarte, Holter, Oliveira, WP 2022)
 - Monetary policy (Dolado, Motiovszki, Pappa AEJ: Macro 2022)

Thanks!

Definition I: Hicks q-complementarity

- A rise in K_e increases the marginal product (wage) of S more than the marginal product (wage) of U
- True whenever S is a stronger q-complement than U with K_e

$$\varepsilon_{K_e U} = \frac{1}{\operatorname{share}_{K_e}} \cdot \frac{\partial \log F_U}{\partial \log K_e} = 1 - \sigma$$

$$\varepsilon_{K_e S} = \frac{1}{\operatorname{share}_{K_e}} \cdot \frac{\partial \log F_S}{\partial \log K_e} = 1 - \sigma + \frac{1}{\operatorname{share}_X} (\sigma - \rho)$$

$$\varepsilon_{K_e S} > \varepsilon_{K_e U} \Leftrightarrow \sigma > \rho$$

• Note: (K_e, U) are always q-complement \Rightarrow also unskilled wages \uparrow

Definition II: Allen p-complementarity

• True whenever

$$\varepsilon_{K_e U} = -\frac{1}{\operatorname{share}_{K_e}} \cdot \frac{\partial \log U}{\partial \log q} = -\frac{1}{1-\sigma}$$

$$\varepsilon_{K_e S} = -\frac{1}{\operatorname{share}_{K_e}} \cdot \frac{\partial \log S}{\partial \log q} = -\frac{1}{1-\sigma} + \frac{1}{\lambda_X} \left(\frac{1}{1-\sigma} - \frac{1}{1-\rho} \right)$$

$$\varepsilon_{K_e S} > \varepsilon_{K_e U} \quad \Leftrightarrow \quad \sigma > \rho$$

Note: (*K_e*, *U*) are always p-substitutes
 (*K_e*, *S*) can be p-complement if *σ* >> *ρ*

